INDIAN SCHOOL SALALAH

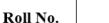
FIRST TERM EXAMINATION - SEPTEMBER (AY- 2024-25)

Class: X

Time: 3 hours

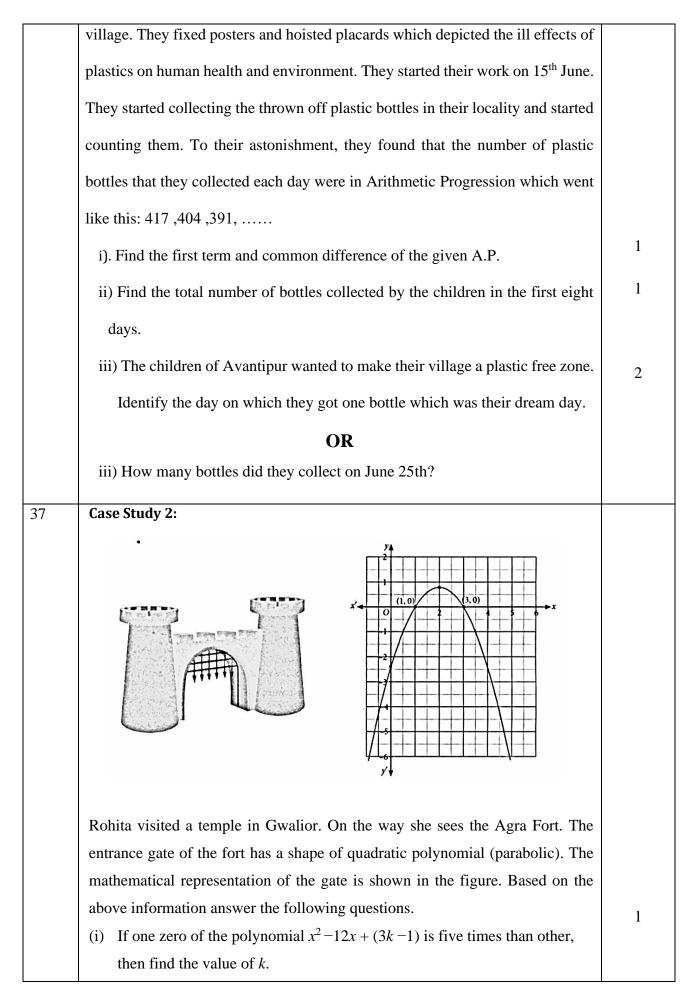
MATHEMATICS (041)

Date: 22/09/2024 Maximum Marks: 80


General Instructions:

- a) This Question Paper has 5 Sections A, B, C, D and E.
- b) Section A has 20 MCQs carrying 1 mark each.
- c) Section B has 5 questions carrying 02 marks each.
- d) Section C has 6 questions carrying 03 marks each.
- e) Section D has 4 questions carrying 05 marks each.
- f) Section E has 3 case based integrated units of assessment (04 marks each) with sub- parts of the values of 1, 1 and 2 marks each respectively.
- g) All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E.
- h) Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

		SECTION A	MARKS
1	The HCF of 12,21,15 is		1
	a) 3 b) 4	c)12 d) 15	
2	A quadratic polynomial, w	hose zeroes are -4 and -5 , is	1
	a) $x^2 - 9x + 20$	b) $x^2 + 9x + 20$	
	c) $x^2 - 9x - 20$	d) $x^2 + 9x - 20$	
3	The nature of graphs of dep	pendent system is	1
	a) parallel lines	b) intersecting lines	
	c) coincident lines	d) perpendicular lines	
4	x(x + 1) + 8 = (x + 1)	2) $(x - 2)$ is	1
	a) linear equation	b) quadratic equation	
	c) cubic equation	d) bi-quadratic equation	


5	The missing terms in AP:, 13,, 3 are:										
	a) 11 and 9)	b) 17 and 9)	c) 18 and 8	3 d) 18 and 9				
6			в	A		c		1			
	In triangle	ABC, ∠BA	$C = 90^\circ$ and	$d AD \perp BC$. Then						
	a) BD . CD	$= BC^2$			b) A	$AB \cdot AC = 2$	BC^2				
	c) BD . CD = AD^2 d) AB . $AC = AD^2$										
7		ne following	g frequency	distributio	n of the hei	ghts of 60	students of a	1			
	class: Height (in cm)	150-155	155-160	160-165	165-170	170-175	175-180				
	Number of Students	15	13	10	8	9	5				
	is			nodal class		imit of the	median class				
	a)310	1	b) 315		c) 320		d) 330				
8	If P(A) denotes the probability of an event A, then										
	a) $P(A) < 0$ b) $P(A) > 1$										
	c) $0 \leq P(A)$	≤ 1		d) -	$-1 \le P(A) \le$	1					
9	If HCF $(16, y) = 8$ and LCM $(16, y) = 48$, then the value of y is							1			
	a)24	b) 16	c)	8	d	l) 48				
10	If the graph of a polynomial intersects the x-axis at three distinct points, then it contains zeroes.							1			
	a) Three	b) Two	c)	Four	d) mo	re than three				
11	The value of k for which the system of equations $x + ky = 3$,										
	11x - 77y = 87 has a unique solution, is										
	11x - 7/y	- 07 mas	a unique s	01411011, 15		a) $k = 13$ b) $k \neq -7$ c) $k = 87$ d) $k \neq 0$					

12	The roots of qu	adratic equation 2x ²	$x^{2} + x + 4 = 0$ are:		1				
	a) Positive and	negative	b	b) Both Positive					
	c) Both Negativ	ve	d) No real roots					
13	A card is drawn from the set of 52 playing cards. Find the probability of getting								
	a queen card.								
	a) $\frac{1}{26}$	b) $\frac{1}{13}$	c) $\frac{4}{53}$	d) $\frac{4}{13}$					
14		13 the A.P. 3, 8, 13, 18		13	1				
14	a) 12 th	b) 13 th	c) 15 th	d) 16 th	1				
	a) 12	0) 15	c) 15	u) 10					
15	In ABC, DE AB. If $CD = 3$ cm, $EC = 4$ cm, $BE = 6$ cm, then DA is equal to								
	a) 7.5 cm	b) 3 cm	c) 4.5 cm	d) 6 cm					
16	If arithmetic me	ean of a, a+3, a+6, a-	+9 and a+12 is 10, the	n 'a' is equal to	1				
	a)1	b) 2	c) 3	d) 4					
		,	, 	,	1				
17	The ratio of LCM and HCF of the least composite number and the least prime								
	number is								
	a) 1:2	b) 2:1	c) 1:3	d) 3:1					
18	The sum of the	digits of a two-digit	t number is 9. If 27 is	added to it, the digits	1				
	of the number get reversed. The number is								
	a)27	b)72	c) 45	d) 36					
	In question nu	mbers 19 and 20, a	statement of Assertio	on (A) is followed by					
	a statement of	Reason (R). Choose	e the correct option.						
19	Assertion: Sum of first 10 terms of the arithmetic progression								
	-0.5, -1.0, -1.5, is 31.								
	Reason : Sum of n terms of an AP is given as $Sn = \frac{n}{2} [2a+(n-1)d]$ where a is								
	first term and d is the common difference.								
	a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct								
	explanation of Assertion (A)								
	b) Both assertion (A) and reason (R) are true and reason (R) is not the correct								
	explanation of Assertion (A)								
	c) Assertion (A) is true but reason(R) is false.								
	d) Assertion (A) is false but reason(R) is true.								

20	Assertion: If $P(E) = 0.07$, then its probability of 'not E' is 0.93	1
	Reason: $P(E) + P(not E) = 1$	
	a) Both Assertion (A) and Reason (R) are true and Reason (R) is the	
	correct explanation of Assertion (A)	
	b) Both assertion (A) and reason (R) are true and reason (R) is not the	
	correct explanation of Assertion (A)	
	c) Assertion (A) is true but reason(R) is false.	
	d) Assertion (A) is false but reason(R) is true.	
	SECTION B	
21	Check whether 8 ⁿ can end with the digit 0 for any natural number n.	2
22	Solve the following system of linear equations by substitution method.	2
	2x - y = 2; $x + 3y = 15$	
	OR	
	A lending library has a fixed charge for the first three days and an additional	
	charge thereafter. Shristi paid $\mathbf{\overline{\xi}}$ 27 for a book kept for seven days, while Rekha	
	paid $\mathbf{\overline{\xi}}$ 21 for a book she kept for 5 days. Find the fixed charge and additional	
	charge paid by them.	
23	Find the value of k for which the following pair of linear equations have	2
	infinitely many solutions: $2x + 3y = 7$; $(k - 1)x + (k + 2)y = 3k$	
24	In a marathon, three athletes step off together and their steps measure 54 cm,	2
	60 cm and 48 cm, respectively. What is the minimum distance each should walk	
	so that each can cover the same distance in complete steps?	
25	<i>E</i> is a point on the side <i>AD</i> produced of a parallelogram <i>ABCD</i> and <i>BE</i> intersects	2
	<i>CD</i> at <i>F</i> . Show that $\triangle ABE \sim \triangle CFB$	
	OR	
	ABCD is a trapezium in which AB CD and its diagonals intersect each other	
	at point O. Using similarity criterion of two triangles, show that $\frac{OA}{OB} = \frac{OC}{OD}$.	
	SECTION C	
26	How many terms of the AP: 24, 21, 18, must be taken so that their sum	
	is 78?	
	OR	

	two terms. Also find the second term and n^{th} terms.						
27	Find the mode of the following data.						
	Marks Number of students						
	Below 10 8						
	Below 20 20						
	Below 30 45						
	Below 40 58						
	Below 50 70						
28	Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of Δ PQR. Show that Δ ABC ~ Δ PQR.	3					
	$\begin{array}{c} A \\ B \\ D \\ C \\ Q \\ M \\ R \end{array}$						
29	Given $\sqrt{5}$ is irrational, prove that $3 + 2\sqrt{5}$ is irrational.	3					
29 30	Given $\sqrt{5}$ is irrational, prove that $3 + 2\sqrt{5}$ is irrational. If α and β are the zeroes of a quadratic polynomial $x^2 - x - 2$ then find the value	3					
	If α and β are the zeroes of a quadratic polynomial $x^2 - x - 2$ then find the value						
	If α and β are the zeroes of a quadratic polynomial $x^2 - x - 2$ then find the value of $\frac{1}{\alpha} - \frac{1}{\beta}$.						
	If α and β are the zeroes of a quadratic polynomial $x^2 - x - 2$ then find the value of $\frac{1}{\alpha} - \frac{1}{\beta}$. OR						
	If α and β are the zeroes of a quadratic polynomial $x^2 - x - 2$ then find the value of $\frac{1}{\alpha} - \frac{1}{\beta}$. OR Find the zeroes of the quadratic polynomial $5x^2 - 4 - 8x$ and verify the						
30	If α and β are the zeroes of a quadratic polynomial $x^2 - x - 2$ then find the value of $\frac{1}{\alpha} - \frac{1}{\beta}$. OR Find the zeroes of the quadratic polynomial $5x^2 - 4 - 8x$ and verify the relationship between the zeroes and the coefficients of the polynomial.	3					
30	If α and β are the zeroes of a quadratic polynomial $x^2 - x - 2$ then find the value of $\frac{1}{\alpha} - \frac{1}{\beta}$. OR Find the zeroes of the quadratic polynomial $5x^2 - 4 - 8x$ and verify the relationship between the zeroes and the coefficients of the polynomial. If the equation $(1 + m^2)x^2 + 2mcx + c^2 - a^2 = 0$ has equal roots then show that	3					
30	If α and β are the zeroes of a quadratic polynomial $x^2 - x - 2$ then find the value of $\frac{1}{\alpha} - \frac{1}{\beta}$. OR Find the zeroes of the quadratic polynomial $5x^2 - 4 - 8x$ and verify the relationship between the zeroes and the coefficients of the polynomial. If the equation $(1 + m^2)x^2 + 2mcx + c^2 - a^2 = 0$ has equal roots then show that $c^2 = a^2 (1 + m^2)$.	3					

33	A plane left 30 minutes late than its scheduled time and in order to reach the destination 1500 km away in time, it had to increase its speed by 100 km/h from the usual speed. Find its usual speed.								5	
	the usual spe	ea. rina n	s usual s	-						
		1 ·	1 (D	OR			2		1.5	
	The sum of t	. –			ages 11	n yea	ars 3 ye	ears ago a	and 5 years	
	from now is	$\frac{1}{3}$. Find out	t his pres	ent age.						
34	State and pro	ve Thales	theorem.							5
35	If the mean	of the fo	llowing	frequency	y distr	ributi	ion is	91 and t	the sum of	5
	frequencies i	s 150, find	the miss	ing frequ	encies	s x an	nd y.			
	Classes	0-30	30-60	60-9	90	90-1	20 1	20-150	150-180	
	Frequency	12	21	<i>x</i>		52	2	у	11	
				OR	2					
	Find the valu	les of x and	d y if the	e median	of the	follo	wing d	ata is 31.		
	Classes	0-10	10-20	20-30	20-30 30-40 40-50 50-60 Tota) Total			
	Frequency	5	x	6	У		6	5	40	
				SECTIO	ON E					
36	Case study 1	:								
	Accumulatio	n of plasti	cs in the	environm	hent cr	reates	s proble	ems for v	vildlife and	
	their habitats	-					-			
	children of MATHEMATICS / X / 2021 - 22, Avantipur decided that they									
	would contri	bute their	service	to put an	end to	to the	e usage	of plast	ics in their	

	(ii) If the polynomial $x^2 + kx - 15$ represents the given curve with one of its	1				
	zeros from the graph, then write the value of k .					
	(iii) Find the zeroes of the polynomial using the graph above and write its	2				
	quadratic equation.	2				
	OR					
	(iii) Write the zeros of the polynomial $6x^2 - 7x - 3$.					
38	Case study 3:					
	Rahul goes to a fete in Mussoorie. There he saw a game having prizes - wall					
	clocks, power banks, puppets and water bottles. The game consists of a box					
	having cards inside it, bearing the numbers from 1 to 200, one on each card.					
	A person has to select a card at random. Now, the winning of prizes has the					
	following conditions: Wall clock - If the number on the selected card is a perfect					
	square. Power bank - If the number on the selected card is a multiple of 3.					
	Puppet - If the number on selected card is divisible by 10. Water bottle - If the					
	number on the selected card is a prime number more than 70 but less than 100.					
	Better luck next time - If the number on the selected card is a perfect cube.					
	Use the above information to answer the questions that follow:					
	(i) Find the probability of winning a wall clock.	1				
	(ii) Find the probability of winning a puppet.	2				
	(ii) Find the probability of winning a puppet. OR	2				
		2				